ec 2 00 6 Mappings and Spaces , 2
نویسنده
چکیده
This paper is concerned with analysis on metric spaces in a variety of settings and with several kinds of structure.
منابع مشابه
1 0 D ec 2 00 6 Mappings and Spaces , 2
This paper is concerned with analysis on metric spaces in a variety of settings and with several kinds of structure.
متن کاملar X iv : m at h / 06 11 11 0 v 1 [ m at h . C A ] 4 N ov 2 00 6 DOUBLING MEASURES , MONOTONICITY , AND QUASICONFORMALITY
We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel against doubling measures with suitable decay. The differentials of mappings that arise in this way satisfy an isotropic form of the doubling condition. We prove that this isotropic doubling condition is satisfied by the distance functions of certain fractal sets. Finally, we construct an isotropic...
متن کاملec 2 00 3 Comparison of integral structures on spaces of modular forms of weight two , and computation of spaces of forms mod 2 of weight one with appendices
متن کامل
ar X iv : m at h / 06 12 41 6 v 1 [ m at h . PR ] 1 4 D ec 2 00 6 An L 2 theory for differential forms on path spaces I
An L theory of differential forms is proposed for the Banach manifold of continuous paths on Riemannian manifolds M furnished with its Brownian motion measure. Differentiation must be restricted to certain Hilbert space directions, the H-tangent vectors. To obtain a closed exterior differential operator the relevant spaces of differential forms, the H-forms, are perturbed by the curvature of M ...
متن کاملFIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES
Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.
متن کامل